
PREQS User Guide

Carol A� San Soucie

September �� ����

� Introduction

This manual describes the usage� installation and basic structure of PREQS� a parallel Richards�
equation solver� Richards� equation ���� models the physical situation of water �owing into a porous
medium containing both air and water ���� The equation is given as�

��	h

�t
� r � 	K	h
rh
 � f� in �� 	�

where K	h
 � k�x��g
� kr	h
� Here� h is hydraulic head� � is water content� k	x
 is the absolute

permeability tensor� kr	h
 is the relative permeability� � is water viscosity� � is water density� g is
gravity� f is a water source term and � is the �ow domain� Boundary conditions of the form�

�	x
	u � n

 �	x
h � �	x� t
� on �� 	�

are considered� where � is the boundary of �� u is the �ux �K	h
rh� n is an outward pointing�
unit� normal vector to �� � and � are functions of position only and � is a function of both position
and time�

PREQS uses a cell�centered �nite di�erence scheme 	or� equivalently� a lowest�order Raviart�
Thomas expanded mixed �nite element approximation ���
 for discretizing 	�
� Backward Euler
is used for the time discretization� giving a fully implicit method� Application of these methods
results in a system of nonlinear discrete equations which must be solved at each time step� This
nonlinear system is solved with Newton�s method and an optional backtracking globalization tech�
nique with dynamic forcing term selection� Each Newton iteration requires the solution of a large�
nonsymmetric linear system to which a preconditioned GMRES method is applied� The system is
preconditioned with a Jacobi preconditioner�

� Usage

The PREQS user interface is based on Philip T� Keenan�s kScript package� a �exible application
scripting language� For a complete introduction to kScript� see the kScript User Manual ���� or the
World Wide Web page at http���www�ticam�utexas�edu�users�keenan�� The kScript package
can be obtained from the Web site� and used as the front end to other applications� but it is subject
to the terms of the kScript copyright notice provided with the distribution and is not in the public
domain� The PREQS user interface was created with cmdGen ���� a C

 code generation tool
written by Keenan� and builds on the Keenan C

 Foundation Class Library� version ����

PREQS reads commands from an input �le written in the kScript language� Before describing
the usage of the PREQS code� we present a brief summary of the core features of kScript�

�

��� kScript

kScript is a complete programming language with comments� numeric and string variables� looping�
branching and user de�ned commands� It includes prede�ned commands for online help� include
�le handling� arithmetic calculations and string concatenation� and communication with the UNIX
shell� Applications can de�ne additional commands and objects which enrich the vocabulary and
power of kScript� kScript is strongly typed and applications can add new data types as well�

For a complete and up�to�date list of commands� functions� types and objects available to the
user interface� run the program to access on�line help� Once kScript� or programs based on it such
as PREQS� is executed� type

help

to get started�
Commands speci�c to the PREQS program are listed below� Each command�s name is followed

by a list of arguments� Most arguments consist of a type name and a descriptive name� enclosed
in angled brackets� These represent required arguments that must be of the stated type�

Arguments enclosed in square brackets are optional literal strings� typically prepositions� They
can be used to create English sentence�like scripts which are easy to read� or they can be omitted
with no change in the meaning of the script� Sometimes several alternatives are listed� separated
by a vertical bar 	�
� For example� the syntax of the set command is

�set� nameExpr name �to��� expression expr

Both the name set and the equal sign are optional� so the �ve commands

set x to ��	

set x � ��	

x � ��	

set x ��	

x ��	

all assign the same value to a variable named x� but the �rst three versions are easier for a human
reader to understand�

The keywords optional and required introduce alternative sets of arguments� Each set begins
with a string literal which� if encountered while parsing the command� signals that the remainder
of that clause will follow� Multiple cases can be separated by a vertical bar� In the required case�
one alternative must be selected� in the optional case� zero or one may be chosen�

The sequence keyword introduces an argument pattern which may be repeated multiple times�
A sequence argument can be an empty string 	��
� a curly brace delimited list of one or more
instances of the pattern� or� a single instance without the surrounding curly braces�

In kScript� a space�delimited sharp or pound symbol 	

 comments out the rest of the line
on which it occurs� Mathematical expressions must be written with no internal spaces� String
literals must be enclosed in curly braces� not quote marks� The curly braces can be nested and
within them only the percent sign 	�
 is special � all other text is recorded verbatim� In all other
contexts� white space 	spaces� tabs� line breaks� and so on
 serves only to delimit commands and
their arguments�

�

��� Variables and Commands

In this section we describe each of the variables and commands which comprise the PREQS user
interface� These variables and commands can be used throughout input �les to set attributes of the
computational grid� the physical problem and solvers for the nonlinear and linear discrete problems�

Many commands take arithmetic or string expressions as arguments� Math expressions can mix
numbers� arithmetic and logical operators� and symbolic names� String expressions are enclosed
in curly braces and can expand references to other string or numeric variables by preceding their
names with a percent sign� Symbolic names can represent constant or variable values� Prede�ned
names are listed below� users can de�ne additional ones using the define and set commands�

Some commands take an argument of type �ftype�� This argument is a prede�ned function
type 	listed below
 and is followed by two parameters� c� and c�� The possible choices for ftype
are�

�� constant

For all values of its arguments� a constant function will return the value c��

�� vg�theta

Speci�es the van Genuchten water content function ����

�	h
 �
�s � �r

	�
 		h
n
m

 �r� 	�

where 	 � c� and m � c��

�� vg�thetaDer

Speci�es the derivative with respect to hydraulic head of the van Genuchten water content
function�

�� vg�relperm

Speci�es the van Genuchten relative permeability function ����

kr	h
 �
	�� ��h�n��

�����h�n�m
�

	�
 		h
n
m��
	�

where 	 � c� and m � c��

�� vg�relpermDer

Speci�es the derivative with respect to hydraulic head of the van Genuchten relative perme�
ability function�

�� user

For user�de�ned functions� the user must specify a compiled routine which evaluates the
function for various arguments� The parameters c� and c� allow some variability in the
run�time speci�cation of this function�

In the next four sections� we discuss the input commands and variables used for setting up
a speci�c problem� Default values for variables are given in parentheses on the same line as the
variable�s name� Appendix A gives a sample input �le along with a description of the problem and
parameters it sets�

�

����� Grid Input

The �rst group of variables and commands are those associated with grid input� Note that the
PREQS code runs three�dimensional problems� Lower dimensional problems should be modeled
by taking one division in the unused directions�

BoundingBox ��� �mathExpr xmin� �mathExpr ymin� �mathExpr zmin� ������

�mathExpr xmax� �mathExpr ymax� �mathExpr zmax� ���

De�ne the domain bounding box by specifying �rst the three coordinates of the left�
front� bottom corner� 	xmin� ymin� zmin
� then the coordinates of the right� back� top
corner 	xmax� ymax� zmax
�

The variables xmin� ymin� zmin� xmax� ymax and zmax can only be changed through the
BoundingBox command� However� the user can see their values directly by echoing these variables�
The default bounding box for the computation is the unit cube�

xmin ���

constant double� The left coordinate of the bounding box�

xmax �	�

constant double� The right coordinate of the bounding box�

ymin ���

constant double� The front coordinate of the bounding box�

ymax �	�

constant double� The back coordinate of the bounding box�

zmin ���

constant double� The bottom coordinate of the bounding box�

zmax �	�

constant double� The top coordinate of the bounding box�

The following commands require a speci�ed direction in which to act� The keyword argument
speci�es this direction and can be either x� y or z as described below�

direction

Keyword Type� Coordinate directions� x� y and z� Literal values are�

x

Left to right coordinate direction�

y

Front to back coordinate direction�

z

Bottom to top coordinate direction�

nProcDivisions �in� �keyword�direction� dir� �is� �mathExpr num�

Specify the number of processors in the coordinate directions�

nCoarseDivisions �in� �keyword�direction� dir� �is� �mathExpr num�

Specify the number of coarse divisions in the coordinate directions for the coarse grid�
This command is valid only when the coarse grid is uniform� The coarse grid must be
the same as or a re�nement of the processor grid�

�

CoarseDivide �keyword�direction� dir� �at� �doubleArray vals�

De�ne a dividing point for subdomains in coordinate directions� Each new dividing point
must be greater than the previously set dividing point and less than the domain boundary
for that direction� The coarse grid must be the same as or a re�nement of the processor
grid�

nFineDivisions �in� �keyword�direction� dir� �is� �mathExpr num�

Specify the number of mesh cells in the coordinate directions for the �ne grid� This
command is valid only when the �ne grid is uniform� The �ne grid must be the same as
or a re�nement of the coarse grid�

FineDivide �keyword�direction� dir� �at� �doubleArray vals�

De�ne a dividing point for mesh cells in coordinate directions� Each new dividing point
must be greater than the previously set dividing point and less than the domain boundary
for that direction� The �ne grid must be the same as or a re�nement of the coarse grid�

isUniformCoarse �	�

int� � if coarse mesh is divided into uniform subdomains� and � otherwise�

isUniformFine �	�

int� � if mesh is divided into uniform mesh cells� and � otherwise�

Distribute

Distribute the coarse mesh among processors�

As of the time this is written� only the �ne grid is used in the computation� However� further
work will include two�level methods making use of both the coarse and �ne grids�

����� Veri�cation of Input

The next group are commands associated with printing out various characteristics of the problem
and grid�

PrintBoundingBox

Prints bounding box coordinates�

PrintProcDivisions

Prints the number of processors in each coordinate direction�

PrintCoarseDivisions

Prints the coarse grid divisions in each coordinate direction�

PrintFineDivisions

Prints the �ne grid divisions in each coordinate direction�

VerifyGrid

Prints the bounding box� number of processors in each coordinate direction and coarse
and �ne grid divisions in each direction�

showStatus

Prints input parameter information including parameters related to the physical proper�
ties of the problem being modeled�

dumpGrid

Prints the computational grid�

�

����� Problem Speci�cation

The physical problem that is modeled is speci�ed with the following group of variables and com�
mands�

SetSigma sequence f �keyword�direction� dir� �int side� �nameExpr ftype� g
Speci�es the coe�cient function for �ux boundary conditions� Sigma is a function of
	x� y� z� t
�

SetUpsilon sequence f �keyword�direction� dir� �int side� �nameExpr ftype� g
Speci�es the coe�cient function for hydraulic head boundary conditions� Upsilon is a
function of 	x� y� z� t
�

SetGamma sequence f �keyword�direction� dir� �int side� �nameExpr ftype� g
Speci�es the right�hand�side function for boundary conditions� Gamma is a function of
	x� y� z� t
�

SetF �nameExpr ftype�

Speci�es the forcing term function� F is a function of 	x� y� z� t
�

SetPermTensor sequence f �int i� �int j� �nameExpr ftype� g
Speci�es entries of the absolute permeability tensor� Entries are functions of 	x� y� z� t
�

SetInitH �nameExpr ftype�

Speci�es the initial hydraulic head function� InitH is a function of 	x� y� z� h
�

SetSoln �nameExpr ftype�

Speci�es the exact problem solution if one exists� The solution is a function of 	x� y� z� t
�

SetTheta �nameExpr ftype�

Speci�es the water content function� Water content is a function of 	x� y� z� h
�

SetThetaDerivative �nameExpr ftype�

Speci�es the derivative of the water content function� The water content derivative is a
function of 	x� y� z� h
�

SetRelPerm �nameExpr ftype�

Speci�es the relative permeability function� The relative permeability is a function of
	x� y� z� h
�

SetRelPermDerivative �nameExpr ftype�

Speci�es the derivative of the relative permebility function� i The relative permeability
derivative is a function of 	x� y� z� h
�

porosity ������

double� Porosity of the medium�

density �	 g�cm��

double� Density of water�

viscosity �	��
 cP�

double� Viscosity of water in g
	sm
 � ��Ns
m� � ��cP�

gravity

double� Gravitational constant � ������ �m
	sec�
�

�

satr ������

double� Residual water saturation�

sats ������

double� Maximal water saturation�

The �le

user�C

gives a dummy de�nition of all the above functions� Even if the user chooses a non�user�de�ned
ftype� such as constant or one of the van Genuchten types� in the input �le� the dummy de�nition
must be compiled� Functions which are user�de�ned can be de�ned in this �le�

����� Solver Parameters

The last group of variables and commands sets various attributes of the nonlinear and linear discrete
system solvers�

verbosity ���

int� �� �� �� ��� produce increasingly detailed debugging information�

nonlinTol �	e�
�

double� Relative error tolerance to use as stopping criterion in nonlinear iterative solution
processes�

nonlinItMax ����

int� Maximum number of iterations to allow in nonlinear iterative solution processes�

linTol �	e���

double� Relative error tolerance to use as stopping criterion in linear iterative solution
processes�

linItMax ����

int� Maximum number of iterations to allow in linear iterative solution processes�

doBackTrack �	�

int� Set to � if backtracking globalization should be run for the nonlinear iteration�

Restrt �	��

int� Restart parameter for GMRES�

FinalTime �	�

double� Set the �nal simulation time in sec�

TimeStep �����	�

double� Set the initial time step size�

MinStep ������	�

double� Set the minimum time step size�

MaxStep ���	�

double� Set the maximum time step size�

isUniformTimeStep �	�

int� Set to � for uniform time steps� or � to select automatic time stepping�

�

hasExactSoln ���

int� Set to � if problem has an exact solution speci�ed�

Solve

Solve the partial di�erential equation�

� Installation

In order to install PREQS� one should �rst obtain and install the Keenan C

 Foundation Class
Library 	KFCL
� This library comes as part of the kScript package and can be obtained at the
World Wide Web site� http���www�ticam�utexas�edu�users�keenan��

In order to compile the KFCL� �ve environment variables must be set� These variables are�

� KEENAN�src

The root directory of the KFCL source code�

� KEENAN�inc

The directory where all include �les for the KFCL will be stored� The Make�les will auto�
matically move these include �les to the directory speci�ed in this variable�

� KEENAN�lib

A directory where the compiled libraries will be placed in subdirectories of the form �ma�
chine!method��

� KEENAN�make

The location of the master Make�le� Make�le�C

�

� KSCRIPT�INC�DIR

A directory for ��k� �les which are included in kScript �les�

The source for these libraries comes in a number of directories� Brie�y� these are�

cont Array� vector and stack classes�

io Formatted I!O� similar to the standard C

 I!O streams library�

ks kScript routines� plus run time support classes� which handle command line argument parsing�

na Complex numbers� sorting routines� statistical routines and random number generators�

os Low level operating system interface and machine dependent function� memory management
routines�

parallel Platform speci�c functions as well as source for routines which de�ne a generic commu�
nications library for use on distributed memory parallel machines�

scripts Scripts for compiling the source�

Once the source code is in place for these libraries� they can be compiled by by setting the
appropriate targets and platforms in the

Targets

�

�le in the

KEENAN�src

directory� The �scripts� directory must be in the executable path�
Then� typing

Build method���method type��

will compile the source code� The method refers to the compiler options such as checking� opti�
mization or debugging� The values it can take are�

debug Sets compiler options to be compatible with the debugger for each platform�

check Turns on some error checking� such as run time checking of array indices� but uses �O� as
a compiler option�

opt Does not turn on extra array checking and uses �O� as a compiler option�

The following directories will need to be created somewhere and pointed to with the above envi�
ronment variables�

� inc

� lib

� lib!sparc

� lib!sparc!check

� lib!sparc!opt

� lib!sparc!debug

� lib!paragon!��� etc�� for other machines

After compiling� the ks� io� cont and os libraries must be in the lib directory under the subdi�
rectory of the appropriate platform� This is where the PREQS make�le will look for them�

In order to compile the PREQS code� the above environment variables must be set� Then� in
the PREQS source directory� typing

make PREQS

will build the PREQS executable�
Currently� the communications supported in the KFCL!comm directory are� PVM� PICL� NX

	native Intel library
 and a null library which conducts a no�opt for each communication call�
The null library is particularly useful for debugging on a single processor� The PREQS make�le
is currently set up to link in the null library� It can be changed to link in the PVM library by
changing PVMDIR in the make�le to be the appropriate PVM directory and by putting in the
appropriate library in the libs variable�

To run the code� the number of processors must be speci�ed with the command line argument
�nproc "� where " is the number of processors used in the computation� An input �le must also
be given� The sample input �le given in this document is contained in the �le input�k� Thus� to
execute the code with this �le� type

PREQS �nproc 	 input�k�

PREQS is primarily written in C

� However� the GMRES method and all routines it de�
pends on are written in FORTRAN� In order to mix these languages� naming conventions with
respect to underscores and capital letters must be speci�ed� Currently� the code is set up for
IBM RS���� systems� In order to change to another system such as a SUN� the �le namecat�h
in KFCL!include�h must be modi�ed� Also� declarations of the FORTRAN routine gmres and
the C

 routine� matmult� called from gmres must be changed in the �le step�h to appropriately
account for underscores�

� Numerical Methods

This section gives a brief description of some of the numerical methods used in the PREQS code�

��� Discretization

The discretiztion scheme employed is a cell�centered �nite di�erence scheme equivalent to the
expanded mixed method of Arbogast� Wheeler and Yotov ���� and analyzed for Richards� equation
in ����

We now describe the �nite di�erence scheme employed in solving the system 	�
�	�
� We consider
a rectangular two or three dimensional domain� �� with boundary ��� Let 	�� �
 denote the L�	�

inner product� scalar and vector�

We will approximate the L� inner product with various quadrature rules� denoting these ap�
proximations by 	�� �
R� where R � M� T and TM are application of the midpoint� trapezoidal and
trapezoidal by midpoint rules� respectively�

Let � � t� � t� � � � � � tN � T be a given sequence of time steps� #tn � tn � tn���
#t � maxn #tn� and for
 �
	t� �
� let
n �
	tn� �
 with

dt

n �

n �
n��

#tn
�

Let V � H	�� div
 � fv � 	L�	�

d � r � v � L�	�
g and W � L�	�
�
We will consider a quasi�uniform triangulation of � with mesh size h denoted by T and consisting

of rectangles in two dimensions or rectangular solids in three dimensions� We consider the lowest
order Raviart�Thomas�Nedelec space on bricks� ���� �� Thus� on an element E � T � we have

Vh	E
 � f		�x�
 ��� 	�x�
 ��� 	�x�
 ��

T � 	i� �i � IRg�

Wh	E
 � f	 � 	 � IRg�

For an element on the boundary� �E � �� �� � we have the edge space�

$h	�E
 � f	 � 	 � IRg�

We use the standard nodal basis� where for Vh the nodes are at the midpoints of edges or faces
of the elements� and for Wh the nodes are at the centers of the elements� The nodes for $h are at
midpoints of edges�

The expanded mixed �nite element method simultaneously approximates� H� %U � �rH and
U � K	H
%U� This method with quadrature is given as follows� Find Hn � Wh� �U

n � Vh�U
n � Vh

��

and Ln � $h for each n � �� � � � � N satisfying�

	dt�	H
n� w
M
 	r �Un� w
 � 	fn� w
� �w � Wh� 	�

	�Un�v
TM � 	Hn�r � v
� 	Ln�v � n
�� �v � Vh� 	�

	Un�v
TM � 	K	Hn
�Un�v
T� �v � Vh� 	�

	�Un � n� �
� � 	�
 �Ln� �
�� �� � $h� 	�

The system 	�
�	�
 reduces to a �nite di�erence scheme for the hydraulic head approximations
at each of the cell centers� To see this� consider �rst equation 	�
 and let w � wijk � Wh be the
basis function�

wijk �

�
�� in cell ijk�

�� otherwise�

Then�

#xi#yj#zk
ijk	�	H
nijk � �	H
n��ijk
 �#tn#yj#zk	
Un
i����jk � Un

i����jk

#xi����

 #tn#xi#zk	
Un
ij����k � Un

ij����k

#yj����

 #tn#xi#yj	
Un
ijk���� � Un

ijk����

#zk����

 #tn#xi#yj#zkf
n�

	

Equation 	�
 gives �Un in terms ofHn� in particular� choosing v � 	vi����jk� �� �
� where vi����jk
is the basis function associated with node 	xi����� yj� zk
�

vi����jk �

����
���

�
	xi

	x� xi����
 x � �xi����� xi������ y � �yj����� yj������ z � �zk����� zk������

�
	xi��

	x� xi����
 x � �xi����� xi������ y � �yj����� yj������ z � �zk����� zk������

� otherwise�

equation 	�
 reduces to 	dropping temporal superscripts
�

�Ux
i����jk �

Hijk �Hi��jk

#xi����
� 	��

If xi���� is on the boundary� then the di�erence in hydraulic head values in equation 	��
 is replaced
by the di�erence between the head in the nearest cell and the multiplier 	 on the boundary closest
to the cell� The divisor for this di�erence will be half the cell width instead of #xi����� The 	

term only plays a role on the outer boundary of the domain�

��

Equation 	�
 gives U in terms of �U� Letting v be chosen as in 	�
 gives�

Ux
i����jk#xi���� �

�

�

�
�kr
�

�
i����jk

�	k���i����j����k����
 k���i����j����k����

 k���i����j����k����
 k���i����j����k����
	 	#xi �U
x
i����jk
#xi�� �U

x
i����jk

 	k���i����j����k����
 k���i����j����k����
	 	#xi �U
y
ij����k
 #xi�� �U

y
i��j����k

 	k���i����j����k����
 k���i����j����k����
	 	#xi �U
y
ij����k
 #xi�� �U

y
i��j����k

 	k���i����j����k����
 k���i����j����k����
	 	#xi �U
z
ijk����
 #xi�� �U

z
i��jk����

 	k���i����j����k����
 k���i����j����k����
	 	#xi �U
z
ijk����
 #xi�� �U

z
i��jk����
�

�
�kr
�

�
i����jk

&Ux
i����jk�

	��

The coe�cient
�
�kr
�

	
i����jk

is approximated by upstream weighting as determined by the sign

of &Ux
i����jk� i�e�� �

�kr
�

�
i����jk

�

�
�kr
�

�
i��jk

� if &Ux
i����jk � ��

�
�kr
�

�
i����jk

�

�
�kr
�

�
ijk

� otherwise�

Lastly� equation 	�
 de�nes the multipliers 	 on the domain boundary� Let � � ����jk in
equation 	�
� Then we have�

��Ux
���jk � ����jk
 �	���jk� 	��

Combining equations 	
�	��
 gives a �nite di�erence method with a � point stencil for hy�
draulic head values�

In order to implement this �nite di�erence scheme in parallel� each processor communicates
with up to �� neighbors� To reduce this requirement� we add extra unknowns along the interfaces
between subdomains� Adding these unknowns allows for the normal �uxes at the interface points to
be discontinuous� which is a nonphysical condition� Thus� extra equations which enforce continuity
of normal �uxes at the interfaces are also introduced� Adding these extra unknowns corresponds to
adding a single hydraulic head at the interface points� This value will be �owned� by one processor
and communicated to the �non�owner� after updates� Let Vi � Vhj
i � Then take� 'Vh �

L
Vi�

The numerical scheme is de�ned as �nding 	Hn� �Un�Un� Ln
 � 	Wh� 'Vh� 'Vh�$h
 at each time step
n � �� � � � � N satisfying�

	dt�	H
n
� w

 	r �Un� w
 � 	fn� w
� 	��

	�Un�v

i�TM � 	Hn�r � �v

i � 	Ln�v � n
�i � 	��

	Un�v

i�TM � 	K	Hn
�Un�v

i�T � 	��

	�Un � n� �
�i�� � 	�
 �Ln� �
M��i��� 	��
X
i

	Un � n� �
�Ii � �� 	��

��

The extra unknowns provide a boundary condition for internal interfaces� Thus� the subdomains
are coupled only through shared boundaries� and each subdomain will only need to communicate
with neighbors sharing interfaces� Hence� subdomains communicate with up to � neighbors and
not ���

��� Nonlinear Equation Solver

The above �nite di�erence scheme results in a coupled system of nonlinear discrete equations�
These nonlinear equations are solved with a backtracking line search globalized inexact Newton�s

method ��� ��� Algorithm ��� describes an inexact Newton method applied to the problem of �nding
a root to the nonlinear equation F 	u
 � � where J is the Jacobian of F �

Algorithm ��� �� Let u��� be an initial guess�

�� For k � �� �� �� � � � until convergence� do

	a
 Choose ��k� � ��� �
�

	b
 Using some Krylov iterative method� compute a vector s�k� satisfying

J�k�s�k� � �F �k�
 r�k�� 	��

with
kr�k�k

kF	u�k�
k
� ��k��

	c
 Set u�k��� � u�k�
 ��k�s�k��

The parameter � is chosen with a dynamic selection criteria� which re�ects the agreement between
F and its linear model at the previous iteration�

��k� � minf�max�maxfe��k�� ���k���	�gg� 	�

where

e��k� �

���F �k�

���� ���F �k���
 J�k���s�k���
���

��F �k���

�� � 	��

The parameter � is chosen with a backtracking line�search globalization technique�

� The PREQS Source Code

This section gives a brief overview of the code structure then discusses the contents of the PREQS
source code �les�

��� Code Overview

In this section� brief comments are made on the grid set�up� then a discussion of the equation
solution driver function follows�

User input commands are used to set up the processor� coarse and �ne grids� then distribute the
coarse and �ne grids over the processors� Source code which supports these commands is located in
the �les Actions�C and GridInputUtil�C� The grid is not distributed over the parallel machine
until the DistributeCmd function is executed�

��

The user command Solve designates that the user�speci�ed equation should be solved� The
driver for the equation solve is the SolveCmd function in Actions�C� This function constructs
a ProblemState class which holds all information including the computational grid for the given
problem� The solve function then initializes the problem and starts a time loop� each iteration of
the time loop calls the step function�

The step function determines the time step size based on whether the user speci�ed automatic
or uniform time stepping� It then calls calcProps which is a function that calculates physical
properties such as relative permeabilities� water contents and derivatives that are needed for the
nonlinear residual and linear system construction� After these properties are calculated� the step

function initializes the linear system matrix data structures and calls various setUp functions which
construct the linear system and nonlinear residual�

As mentioned in Section �� the cell�centered �nite di�erence scheme used in PREQS leads to a �
point stencil� To reduce communication requirements� PREQS has extra hydraulic head unknowns
along interfaces between subdomains� Each of these unknowns is �owned� by a processor 	the lower
number of two two processors that share the interface owns the unknowns along the interface
�
The owner processor calculates properties associated with this unknown and updates the �sharer�
processor�

Physical data and unknowns are stored in the dataArray classes� Among its members� this class
has a doubleVector� lgvec� a ��D doubleArray� intr� and an array of ��D doubleArrays� The lgvec

vector holds all data for the interior cells and boundary unknowns� The intr array holds all data
for the interior subdomain cells� This array is aliased to the beginning of lgvec� The ��D arrays
hold the boundary and interface data for the processors six boundaries� The owned unknowns on
the boundaries are aliased to consecutive entries in lgvec� Thus� lgvec can be passed to the linear
solver which expects a long vector of system unknowns�

The linear system matrix can be stored in blocks as can be seen in thematrices�C� matrices�h

and ProblemState�h �les� The AA block holds the � point stencil entries for the interior unknown
dependencies on other interior unknowns� The AB block is actually an array of six ��D arrays which
store dependencies of interior unknowns on subdomain boundary unknowns� The BA block is also
an array of six ��D arrays storing the dependencies of the subdomain boundary unknowns on
the interior unknowns� Lastly� the BB block is an array of six bndryMat classes� This is a class
de�ned in matrices�h which stores boundary dependencies on other boundary unknowns� For
a given subdomain face� boundary on boundary dependencies can be expressed as an unknown
depending on itself 	stored in the bndryMat�diag array
 and as the boundary unknown depending
on unknowns on di�erent faces 	�around� an edge dependencies
� These last dependencies are
stored in the bndryMat�cross array�

After the setUp functions conclude� step calls the newtonCheck function which checks for con�
vergence of the Newton method� If convergence is not attained� a while loop is started where
each iteration solves the linear system� backtracks if the user speci�ed backtracking� constructs an
updated system and nonlinear residual and checks for convergence�

The linear system is solved with the GMRES method� This solver is coded in Fortran� but the
matrix�vector multiply and preconditioner 	Jacobi for now
 are coded in C

 to take advantage
of the dataArray class structure� The matrix�vector multiply is done in a function called matmult

contained in the matmult�C �le� This function performs the multiply in block fashion and within
each block� applies a band multiply�

After step converges the Newton iteration� it calculates the L� error in the problem solution if
the user speci�ed that an exact solution exists� Control is then returned to the SolveCmd function
which updates the time and loops until the �nal time is reached�

��

��� File Contents

The following is a brief summary of the source code �les and what is in each one�

� GridInputUtil�C Utility functions used for grid and problem input�
Functions included� ProcessDivisions� isRe�nement� PartitionGrid� inputFn� PrintHFunc

� InitMass�C Contains InitMass function which calculates the initial water mass in the system
� used in mass balance calculations� Some code is duplicated from the setUp routines�
Function included� InitMass

� InitProblem�C Contains InitProblem function which initializes the pressure head� absolute
permeability� sigma and upsilon variables�
Function included� InitProblem

� actions�C Contains de�nitions of input commands�
Functions included� BoundingBoxCmd� nProcDivisionsCmd� nCoarseDivisionsCmd� Coarse�
DivideCmd� nFineDivisionsCmd� FineDivideCmd� PrintBoundingBoxCmd� PrintProcDivi�
sionsCmd� PrintCoarseDivisionsCmd� PrintFineDivisionsCmd� VerifyGridCmd� DistributeCmd�
SetSigmaCmd� SetUpsilonCmd� SetGammaCmd� SetFCmd� SetPermTensorCmd� SetInitHCmd�
SetSolnCmd� SetThetaCmd� SetThetaDerivativeCmd� SetRelPermCmd� SetRelPermDeriva�
tiveCmd� SolveCmd� ShowStatusCmd� dumpGridCmd

� backtrack�C Performs the backtracking line�search globalization while updating reduction
factor used in linear system tolerance selection�
Function included� backtrack

� cState�C Declares the global ProblemState pointer cState�

� calcProps�C Calculates physical properties used in matrix set up � water content� relative
permeability and their derivatives�
Function included� calcProps

� computeError�C Computes the discrete L� error for the case that an exact solution is known�
Function included� computeError

� dataArray�C Implements dataArray� bndryArray and tensor classes�

� direction�C De�nes the numerical value for indexing x� y and z as coordinate directions�
Function included� initDirections

� dumpGrid�C Prints global grid into �le grid�eye in EYE format�
Function included� dumpGrid

� feval�C Evaluates nonlinear function at a given pressure head�
Function included� feval

� fn�C Implements data function classes� constant� van Genuchten and user de�ned�

� gFns�C Global norm and dot product functions for dataArrays�
Functions included� gnorm and gdot�

� globalVars�C Declares pointers to various global functions�
Functions included� globalVars��globalVars

��

� grid�C Implementation of constructor and print function for grid class�
Functions included� grid��grid	
� grid��PrintGrid	

� jacobi�C Implementation of Jacobi preconditioner 	diagonal scaling PC
�
Functions included� jacobi

� matmult�C Performs matrix�vector multiply and update� y � b � y
 a �A � x�
Functions included� matmult� matmultAA� matmultAB� matmultBA� matmultBB�

� matrices�C Implements ��D and ��D banded matrix classes as well as a specialized boundary
matrix class�
Functions included� constructor� resize� operator� and print for bandMat�d� bandMat�d and
bndryMat classes�

� newtonCheck�C Checks for convergence of the Newton method�
Functions included� newtonCheck

� noprec�C Performs no preconditioning action � just copies src to dest�
Functions included� noprec

� printMatrix�C Prints the system matrix�
Functions included� printMatrix

� problemState�C Constructor for the problemState class�
Functions included� problemState��problemState�

� richardsMain�C This is the driver for the PREQS code�
Functions included� userMain

� richardsPost�C Posts commands to the kScript tables�
Functions included� richardsCmdsPost

� richardsPostObjs�C Posts objects to kScript tables�
Functions included� richardsPostObjects

� setUpBndMat�C Functions in this �le calculate matrix and right�hand side entries correspond�
ing to �ux values on subdomain boundary edges�
Functions included� setUpBndMatx� setUpBndMaty� setUpBndMatz�

� setUpForceTerm�C Calculates contribution to right�hand�side of forcing term� Updates con�
tribution to mass from forcing term�
Function included� setUpForceTerm

� setUpIntMat�C Calculates matrix entries from �uxes across edges interior to the subdomain�
Functions included� setUpIntMat

� setUpTimeMat�C Calculates contribution to right�hand�side and diagonal matrix entries due
to the time derivative term� Also updates contribution to mass from time change in mass�
Functions included� setUpTimeMat

� step�C Solves the nonlinear system for a given time�
Functions included� step

��

� transferData�C Transfers data in arrays pointed to in stu� from owner to sharer�
Functions included� transferData

� user�C Default de�nitions of input functions�
Functions included� userSigx�� userSigx�� userSigy�� userSigy�� userSigz�� userSigz�� userUpsx��
userUpsx�� userUpsy�� userUpsy�� userUpsz�� userUpsz�� userGamx�� userGamx�� userGamy��
userGamy�� userGamz�� userGamz�� userF� userInitH� userSoln� userTheta� userRelPerm�
userThetaDer� userRelPermDer� userK��� userK��� userK��� userK��� userK��� userK��

� whereAmI�C This �le contains a routine which �nds the indices for the calling processor�s
coordinates in the processor grid as well as its neighbors�
Functions included� whereAmI

� gmres�f Contains routines associated with the GMRES iterative solver�
Functions included� gmres� update� basis

� gdblas�f Global parallel functions for use in gmres�
Functions included� Gdnorm�� Gddot

� dblas�f Double precision blas routines�

Header �les contained in the PREQS code are� GridInputUtil�h� InitProblem�h� cState�h�
dataArray�h� direction�h� fn�h� gFns�h� globalVars�h� grid�h� matrices�h� msgtypes�h� printMatrix�h�
problemState�h� richards�h� step�h� user�h� verbosity�h and whereAmI�h�

��

Appendix A� Test Program Input �le

This section describes a sample input �le used in the PREQS program� This sample �le is given
below�

include �u	��carol�richards�units�k

BoundingBox � �� �� � � � 	���cm� 	���cm� ���cm �

nProcDivisions in x is �

nProcDivisions in y is �

nProcDivisions in z is 	

isUniformCoarse � 	

nCoarseDivisions in x is �

nCoarseDivisions in y is �

nCoarseDivisions in z is �

isUniformFine � 	

nFineDivisions in x is ��

nFineDivisions in y is ��

nFineDivisions in z is 	�

Distribute

VerifyGrid

nonlinTol � 	e��

nonlinItMax � ��

linTol � 	e��

Restrt � ��

linItMax � ���

doBackTrack � �

MinStep � �����	�day

MaxStep � ��hr

TimeStep � �������day

FinalTime � ����day

isUniformTimeStep � �

verbosity �

hasExactSoln � �

double hres � ���
�cm

SetSigma � x � constant 	

x 	 constant 	

y � constant 	

y 	 constant 	

z � user � �

z 	 user � � �

SetUpsilon � x � constant �

x 	 constant �

y � constant �

y 	 constant �

��

z � user � �

z 	 user � � �

SetGamma � x � constant �

x 	 constant �

y � constant �

y 	 constant �

z � user �	����cm �

z 	 user ����cm � �

SetF constant �

SetPermTensor � 	 	 user ����e�	��m�m ����e�	��m�m

� � user ����e�	��m�m ����e�	��m�m

� � user ����e�	��m�m ����e�	��m�m

	 � user ����e�	��m�m ����e�		�m�m

	 � user ����e�	��m�m ����e�		�m�m

� � user ����e�	��m�m ����e�		�m�m �

SetInitH user hres �

SetTheta vg�theta �����
 ���

SetRelPerm vg�relperm �����
 ���

SetThetaDerivative vg�thetaDer �����
 ���

SetRelPermDerivative vg�relpermDer �����
 ���

porosity � �����

density � 	�gm�cm!�

viscosity � 	�	�
�cP

gravity � ��������m�sec!�

comp �
�
��	��m!��nt

satr � �����	

sats � ����

Solve

The �rst line speci�es that the program should include the �le units�k� This �le uses the cgs
units system as base and de�nes a number of units in terms of these� These unit de�nitions allow
PREQS input to be in any unit system� not even a consistent system� The BoundingBox command
speci�es that the �ow domain will be the rectangular solid where x � ��� ����� y � ��� ���� and
z � ��� ���� The processor mesh is � 	 � 	 �� The coarse grid is uniform with � divisions in each
coordinate direction� The �ne grid is also uniform� but has �� divisions in each of the x and y

directions and �� divisions in the z direction� The user has then asked to distribute the grid over
the processors and verify the resulting grid�

The Newton method will iterate until a discrete l� norm of the residual is less than �e � �
or until �� iterations have executed� whichever comes �rst� The GMRES method will iterate
until a relative residual reduction of �e� � is achieved or until ��� iterations have been executed�
The restart parameter is ��� The backtracking line�search globalization will not be applied� The
minimum time step is ������ day� the maximum step is � hours and the initial time step is ������
day� The �nal time is ��� day� Automatic time step selection will be used so that the time step

�

will grow after the initial step� The verbosity level is � and an exact solution is not speci�ed�
A temporary variable hres is speci�ed to be double with the value of ���� cm� No �ow boundary

conditions are set for all x and y external domain boundaries� User�speci�ed Dirichlet conditions
are set for the domain top and bottom boundaries� The source!sink term is �� The absolute
permeability tensor entries are all user�de�ned functions with two parameters� The �le user�C

de�nes all user�de�ned functions for this case� Lastly� the initial hydraulic head function is also
speci�ed to be a user�de�ned function�

The water content and relative permeability functions along with their derivatives are speci�ed
to be of van Genuchten form with 	 � ������ and m � ���� Physical constant are set as given�

The last of the �le tells PREQS to solve the speci�ed equation with the above de�ned parame�
ters�

Acknowledgements

I wish to thank Philip T� Keenan for his advice and help in the design of the matrix classes and in
the design of the matrix�vector multiply routines�

��

References

��� T� Arbogast� M� F� Wheeler� and I� Yotov� Mixed �nite elements for elliptic problems

with tensor coe�cients as cell�centered �nite di�erences� Dept� Comp� Appl� Math� TR �����
Rice University� Houston� TX ������ Mar� � �� To appear SIAM J� Numer� Anal�� � �� vol�
���

��� S� C� Eisenstat and H� F� Walker� Globally convergent inexact Newton methods� SIAM
J� Optimization� � 	� �
� pp� � ������

��� � Choosing the forcing terms in an inexact Newton method� SIAM J� Sci� Comp�� �� 	� �
�
pp� ������

��� R� A� Freeze and J� A� Cherry� Groundwater� Prentice Hall� Inc�� New Jersey� � � �

��� C� A� San Soucie� Mixed �nite element methods for variably saturated subsurface �ow� Dept�
Comp� Appl� Math� TR ����� Rice University� Houston� TX ������ Apr� � ��

��� M� T� van Genuchten� A closed form equation for predicting the hydraulic conductivity of

unsaturated soils� Soil Sci� Soc� Am� J�� �� 	� ��
� pp� � ��� ��

��� P� T� Keenan� cmdGen ��� user manual� Texas Inst� for Comp� and Applied Math� ��� �
University of Texas� Austin� TX� Feb� � ��

��� � kScript ��� user manual� Texas Inst� for Comp� and Applied Math� ����� University of
Texas� Austin� TX� Feb� � ��

� � J� Nedelec� Mixed �nite elements in IR�� Numer� Math�� �� 	� ��
� pp� ��������

���� P� A� Raviart and J� M� Thomas� A mixed �nite element method for second order elliptic

problems� in Mathematical Aspects of Finite Element Methods� Lecture Notes in Mathematics
���� I� Galligani and E� Magenes� eds�� Berlin� � ��� Springer�Verlag� pp� � ������

���� L� A� Richards� Capillary conduction of liquids through porous mediums� Physics� � 	� ��
�
pp� ��������

��

